
Timeline Analysis

Timeline Analysis 101 (1)

• What is Timeline Analysis?
• Chronologically arranged data of various artifacts such as filesystem metadata

entries and registry entries.

• Why Timeline Analysis?
• It helps us to know what occurred before or after a given event.

• For example, if we know the initial infection time, we can use timelines to know what file
was created, modified, and deleted before the time. That can show us what caused the
infection. We can also use timelines to estimate what attackers did after the infection.

2Copyright Internet Initiative Japan Inc.

Timeline Analysis 101 (2)

• How to analyze timeline (1)
• Timelines often become large. In real case, each timeline contains millions of

lines and that could be several hundred Mbytes in size. It is impossible for
humans to view a whole timeline.

• The most important purpose of timeline analysis is to know what occurred
before or after a given event. Those events which investigators focus on are
called "pivot points".

Copyright Internet Initiative Japan Inc. 3

Timeline Analysis 101 (3)

• How to analyze timeline (2)
• First, you should find “pivot points” by other way such as examining auto-start

locations or program execution artifacts. Then you can examine timelines by
investigating around those lines as starting points.

• Usually “pivot points” indicate certain time frames and/or file paths. Thus we
can decrease lines to investigate by applying those filters to the timelines.

Copyright Internet Initiative Japan Inc. 4

Timeline Analysis 101 (4)

• How to analyze timeline (3)
• Sometimes investigators build a "super-timeline" by gathering many kinds of

timestamps such as registry, event logs, program execution artifacts first. But it
could be filled with unnecessary events and it could become too large.

• We recommend you to investigate each kind of timeline for each purpose such
as revealing file manipulation events and program execution events. Then we
can concatenate the results of each timeline analysis to reveal details of
incidents. It is not necessary to analyze all timelines at the same time.

• In this section, we will build timelines from filesystem metadata and
registry entries.

Copyright Internet Initiative Japan Inc. 5

Analyzing Filesystem Timelines

NTFS 101

• To examine Windows computers, we handle NTFS volumes.

• The filesystem has various kinds of metadata. The following metadata
is useful for digital forensics.
• $MFT

• $UsnJrnl

• $Logfile

• $I30

7Copyright Internet Initiative Japan Inc.

NTFS 101: MFT (1)

• The Master File Table (MFT) contains information about all files and
folders as its entries.

• Windows does not erase MFT entries immediately when files or
folders are deleted. It just changes the "in-use" flag to zero in the MFT
entry corresponding to the deleted file or folder. Later, when newer
files or folders are created, Windows overwrites those MFT entries.

• Thus we can get information of deleted files or folders from those MFT
entries.

8Copyright Internet Initiative Japan Inc.

NTFS 101: MFT (2)

• Each MFT entry has a MFT entry header and multiple "attributes".

• MFT entry headers start with the ASCII signature "FILE". The signature typically
becomes "BAAD" when the entry is corrupt.

• Each MFT entry contains several pieces of important information such as flags ("in-
use" and "folder"), link count, MFT record ID and so on.

9Copyright Internet Initiative Japan Inc.

MFT entry
header

Attribute
header(1)

Attribute
content(1)

Unused
space

...
Attribute
header(2)

Attribute
content(2)

Attribute
header(n)

Attribute
content(n)

NTFS 101: MFT (3)

• All MFT entries are exactly 1024 bytes or 4096 bytes in size.

• It depends on the physical sector size of the disk storage.

10Copyright Internet Initiative Japan Inc.

MFT entry
header

Attribute
header(1)

Attribute
content(1)

Unused
space

...
Attribute
header(2)

Attribute
content(2)

Attribute
header(n)

Attribute
content(n)

The length is fixed to 1024 bytes or 4096 bytes

Physical Sector Size Length of Each MFT Entry

512 bytes 1024 bytes

4096 bytes 4096 bytes

NTFS 101: MFT Attributes (0)

• MACB times are essential information for timeline analysis.

• It means:
• the last Modification time

• the last Access time

• the last Change time (the last modified time of the related MFT entry)

• the Birth time (the creation time)

11Copyright Internet Initiative Japan Inc.

NTFS 101: MFT Attributes (1)

• There are many standard attribute types. We often focus on the
following four attributes for forensic investigation.

• $STANDARD_INFORMATION ($SI)

• $FILE_NAME ($FN)

• $DATA

• $EA (Extended Attributes)

12Copyright Internet Initiative Japan Inc.

NTFS 101: MFT Attributes (2)

• $STANDARD_INFORMATION ($SI)
• It contains general information such as MACB times, the owner and its security ID. These

timestamps can be changed by Windows APIs.

• $FILE_NAME ($FN)
• It contains a file name in Unicode (UTF-16LE). And it also contains timestamps like $SI.

Timestamps in this attribute can not be changed by user-mode Windows APIs.

• On timestamp manipulation, some attackers modify only $SI attributes. So we can find
those timestamp manipulations by examining the differences between $FN and $SI
timestamps.

13Copyright Internet Initiative Japan Inc.

NTFS 101: MFT Attributes (3)

• $DATA
• It is a file content. Each file can have multiple $DATA attributes. When a file has more than

one $DATA attributes, the each additional one must have unique name, and those are
called "alternative data stream" (ADS).

• For example, Windows uses ADS for "Zone.Identifier". It indicates that the file was
downloaded from the internet.

• $EA (Extended Attributes)
• It was designed for backward compatibility with OS/2 applications.

• Variants of the Trojan Zeroaccess uses $EA for storing malicious payload.

• Windows 8 or later also use this attribute on many system binaries as a part of the secure
boot components.

14Copyright Internet Initiative Japan Inc.

NTFS 101: MFT Attributes (4)

• Since the length of each MFT entry is fixed, attribute contents are stored in
external cluster in the filesystem when they are too large to be stored in a MFT
entry.

• For example, If the length of each MFT entry is fixed to 1024 bytes, a $DATA
attribute over about 700 bytes is stored in external cluster.

15Copyright Internet Initiative Japan Inc.

MFT entry
header

Attribute
header(1)

Attribute
content(1)

Unused space...
Attribute
header(3)

Attribute content(3)

Attribute
header(2)

Attribute
content(2)

The 3rd attribute header give the
addresses of the content stored in external
cluster (outside the MFT).

NTFS 101: MFT Attributes (5)

• When an attribute content is stored in external cluster, the attribute is called the
"non-resident" attribute.

• On the other hand, when a content is small enough, a whole content is stored in a
MFT entry. It is called the "resident" attribute.

• So, we can restore a deleted file from a MFT entry, if the $DATA attribute was the
"resident" attribute.

16Copyright Internet Initiative Japan Inc.

MFT entry
header

Attribute
header(1)

Attribute
content(1)

Unused space...
Attribute
header(3)

Attribute content(3)

Attribute
header(2)

Attribute
content(2)

Non-resident

Resident

MFT Parsing Tools (1)

• MFTRCRD [1]
• MFTRCRD is a command line MFT record decoder for online filesystem.

• You can use it to know the information contained in MFT easily.

Copyright Internet Initiative Japan Inc. 17

NTFS 101: Demo (1)

Copyright Internet Initiative Japan Inc. 25

NTFS 101: Demo (2)

Copyright Internet Initiative Japan Inc. 26

NTFS 101: Demo (3)

Copyright Internet Initiative Japan Inc. 27

NTFS 101: Demo (4)

Copyright Internet Initiative Japan Inc. 28

NTFS 101: Demo (5)

Copyright Internet Initiative Japan Inc. 29

NTFS 101: Demo (6)

Copyright Internet Initiative Japan Inc. 30

Copyright Internet Initiative Japan Inc.

NTFS 101: MFT (4)

31

• In real case, you should examine MFT of acquired disk images instead of online
volumes.

• MFT is stored in the root of the NTFS volume as a file named "$MFT".

• We can extract the file from disk images by using several image mounting/parsing
tools.

In this case, we used the FTK
Imager.

NTFS 101: MFT (5)

• We can also confirm existence of ADS and extract it easily by using file
parsing/mounting tools such as FTK imager.

Copyright Internet Initiative Japan Inc. 32

A file containing ADS

Name of a ADS

MFT Parsing Tools (2)

• analyzeMFT.py [2]
• analyzeMFT.py can parse $MFT files and summarize those information.

• It shows information contained in MFT entry header, $SI, $FN and, $DATA attributes. It also
shows other standard attributes such as $EA exist or not.

• If a MFT entry has more than one $FN attribute, analyzeMFT.py will parse all of those.

• It is also capable of anomaly detection for $SI and $FN timestamps.

Copyright Internet Initiative Japan Inc. 33

MFT Parsing Tools (3)

• Mft2Csv [3]
• Mft2Csv can parse $MFT files and raw disk

images. It can extract resident files from
$MFT.

• Its output contains details of several types
of information such as $EA entries. That is
useful to seek suspicious contents stored in
$EA.

• Mft2Csv can also parse recovered $MFT
entries by MftCarver.

Copyright Internet Initiative Japan Inc. 34

MFT Parsing Tools (4)

• fte (FILETIME Extractor) [4]
• fte can parse not only $MFT but

also INDX attributes which we will
mention later.

• It has simple GUI viewer.

Copyright Internet Initiative Japan Inc. 35

MFT Carving Tools (1)

• MftCarver [5]
• This tool dumps individual MFT entries. It can scan unallocated spaces, file

slacks, memory dumps, and so on.

• We can recover old MFT entries that are not listed in current MFT.

Copyright Internet Initiative Japan Inc. 36

MFT Carving Tools (2)

• Bulk Extractor with Record Carving [6]
• It is an enhanced version from original Bulk

Extractor. It contains scanner plug-ins for records
of $MFT, $LogFile, $UsnJrnl:$J,
$INDEX_ALLOCATION, and utmp structure.

• It can recover those records from disk images.

Copyright Internet Initiative Japan Inc. 37

Timeline Analysis Exercise 1-1 (1)

View MFT entries and examine a certain folder

• The purpose of this exercise:
• By parsing $MFT, list up the files and folders which placed in the desktop folder of user "ttaro".

• We parsed a $MFT of ttaro's disk with analyzeMFT.py. And the following is the
result. Let's open it with CSVFileView.
• "Training_Materials\TimelineAnalysis\Win7\analyzeMft-output.csv".

• The CSVFileView binaries are placed in the following paths.
• Training_Materials\Tools\csvfileview-x64\CSVFileView.exe (for 64 bit)

• Training_Materials\Tools\csvfileview\CSVFileView.exe (for 32 bit)

• The below is command line sample for analyzeMft.py

Copyright Internet Initiative Japan Inc. 38
analyzeMFT.py -f artifact\$MFT -a -e -o analyzeMft-output.csv

Timeline Analysis Exercise 1-1 (2)

View MFT entries and examine a certain folder

• An output of analyzeMFT.py has 54 columns. Most of those are same
as we viewed in demo 0. But follows are useful columns added by
analyzeMFT.py.
• STF FN Shift

• If "Y" (means YES), the $FN creation time is after the $SI creation time. It implies that the
timestamps in $SI could have been manipulated.

• uSec Zero
• If "Y", the micro second (uSec) value of $SI creation time is zero. It also implies that the

timestamp could have been manipulated.

• ADS
• If "Y", the MFT entry contains alternative data stream (ADS).

• EA
• If "Y", the MFT entry contains $EA attribute.

Copyright Internet Initiative Japan Inc. 39

Timeline Analysis Exercise 1-1 (3)

View MFT entries and examine a certain folder

• Notice:
• Original zip format contains the creation time of files on the 10 millisecond

scale. And it fills the values under 10 millisecond with zero when extraction of
that files. So old zip archives can trigger false positives by this uSec Zero
detection.

• But these days, ordinary zip archivers use extra fields to support higher-
resolution timestamps. So we hardly face those false positives.

Copyright Internet Initiative Japan Inc. 40

Timeline Analysis Exercise 1-1 (4)

View MFT entries and examine a certain folder

• Let's apply the filter to list files and folders placed in user ttaro's
desktop.

• First, click the "Edit Display Filter" button.

Copyright Internet Initiative Japan Inc. 41

View MFT entries and examine a certain folder

Timeline Analysis Exercise 1-1 (5)

Copyright Internet Initiative Japan Inc. 42

1. Check here

2. Select "Filename #1" for target
of the filter.

3. Click this button to input the column
name to the field above.

4. Input condition. In this case, type
CONTAINS '/Users/ttaro/Desktop/'

Or, you can simply copy the filter commands from the below file.
"Training_Materials\TimelineAnalysis\Win7\win7-filter-samples.txt".

5. Finally, click "OK".

Without Carriage-return

Timeline Analysis Exercise 1-1 (6)

View MFT entries and list files placed in ttaro's Desktop folder

• To apply the filter, activate the "Use Display Filter" button.

Copyright Internet Initiative Japan Inc. 43

Timeline Analysis Exercise 1-1 (7)

View MFT entries and examine a certain folder

• After applying the filter, you can confirm 355 entries contained in ttaro's desktop.

• These include deleted files which do not exist in the NTFS volume.

Copyright Internet Initiative Japan Inc. 44

Timeline Analysis Exercise 1-1 (8)

View MFT entries and examine a certain folder

• "Active" column indicate the file exist or not. It is result of parsing in-use flag in a
MFT entry header.

• So, we can focus on the deleted files by applying the filter to display rows with the
column as "Inactive". Then we can confirm 202 deleted files and folders on ttaro's
desktop.

• We can also confirm 153 files and folders which exist in the folder by applying the
filter to display rows with the column as "Active".

Copyright Internet Initiative Japan Inc. 45

Timeline Analysis Exercise 1-2 (1)

Find suspicious timestamps

• Find the files which are suspicious of timestamp manipulation in
ttaro's Desktop by checking "STF FN Shift" and "uSec Zero" columns.

• Notice: ZIP archivers manipulate $SI timestamps for the purpose of
recovering original timestamps.

Copyright Internet Initiative Japan Inc. 46

Timeline Analysis Exercise 1-2 (2)

Find suspicious timestamps

• Let's use display filter to check "STF FN Shift" column.

Copyright Internet Initiative Japan Inc. 47

You can simply copy the filter commands from the file
"Training_Materials\TimelineAnalysis\Win7\win7-filter-samples.txt".

Without Carriage-return

Timeline Analysis Exercise 1-2 (3)

Find suspicious timestamps

• You can confirm 148 entries with applying the filter to display rows
with "STF FN Shift" column as 'Y'. 147 of those are placed under the
"SysinternalsSuite" folder.

• It indicates the possibility that the folder was extracted from a archive
file such as zip. And SysinternalsSuite is a famous windows utility
package which is distributed as a zip archive file.

Copyright Internet Initiative Japan Inc. 48

Timeline Analysis Exercise 1-2 (4)

Find suspicious timestamps

• Thus, we should focus on the last one file which is not contained
SysinternalsSuite folder first. Its name is "GoodEveningForensic.txt"

Copyright Internet Initiative Japan Inc. 49

Click the field name "Filename #1"
to sort by this field.

Timeline Analysis Exercise 1-2 (5)

Find suspicious timestamps

• You can see that the $SI timestamps are before $FN timestamps. It
implies that someone probably manipulated the file's timestamps after
creating the file.

Copyright Internet Initiative Japan Inc. 50

Timeline Analysis Exercise 1-2 (6)

Find suspicious timestamps

• Next, let's use display filter to check uSec Zero column.

Copyright Internet Initiative Japan Inc. 51

You can simply copy the filter commands from the file
"Training_Materials\TimelineAnalysis\Win7\win7-filter-samples.txt".

Without Carriage-return

Timeline Analysis Exercise 1-2 (7)

Find suspicious timestamps

• You can confirm one entry by applying filter to display rows with "uSec
Zero" column as 'Y'. The file is "GoodNightForensic.txt".

• All timestamps contained in the entry are same. But analyzeMFT.py
detected that micro second values of those are zero.

Copyright Internet Initiative Japan Inc. 52

Timeline Analysis Exercise 1-2 (8)

Find suspicious timestamps

• It is not natural. It implies that someone probably manipulated the
file's timestamps.

• For example, "SetMACE.exe" can manipulate all timestamps contained
in both of $SI and $FN.

• If attackers set those timestamps with non-zero micro second values, it
becomes more difficult to detect.

Copyright Internet Initiative Japan Inc. 53

Timeline Analysis Exercise 1-3 (1)

Recover files from $MFT

• There are two entries for deleted files which were in ttaro's desktop.

• The names of the files are:
• GoodMorningForensic.txt

• GoodAfternoonForensic.txt

• Can we recover these contents?
• File carving may recover them. But it consumes a long time.

• If contents of those files are stored in MFT entries (in other words, those
$DATA attributes were "resident"), we can recover them from the $MFT!

Copyright Internet Initiative Japan Inc. 54

Timeline Analysis Exercise 1-3 (2)

Recover files from $MFT

• Let's check the resident flags for $DATA attribute in the target files.

• We executed Mft2Csv for the same $MFT as before. And the parsed list of MFT
entries are saved as the file below. Let's open it with CSVFileView!
• "TimelineAnalysis\Win7\Mft2Csv-output\Mft_2018-02-25_00-18-39.csv"

• Then, apply the filter to display target files.

Copyright Internet Initiative Japan Inc. 55

You can simply copy the filter commands from the file
"Training_Materials\TimelineAnalysis\Win7\win7-filter-samples.txt".

Without Carriage-return

Timeline Analysis Exercise 1-3 (3)

Recover files from $MFT

• A MFT entry list of Mft2Csv output has 124 columns and those are
similar to result of analyzeMFT.py, but the column names are different.

• Mft2Csv has some additional columns such as
"DATA_NonResidentFlag". If its value is "0", it means resident. In other
words, a $DATA content of the entry can be extracted from $MFT.

Copyright Internet Initiative Japan Inc. 56

Timeline Analysis Exercise 1-3 (4)

Recover files from $MFT

• When Mft2Csv is executed with "Extract Resident" option, it saves the recovered files in the output
folder. And Mft2Csv set "[0x00000000]" as prefix of recovered files’ file names.

• Since the number of extracted files is over tens of thousands, we archived those files to
extracted_files.zip.

• So you should browse names of files that are contained in the archive file without extracting those
all files (since it takes long time). If you can find the file you look for, extract only the target file.

Copyright Internet Initiative Japan Inc. 57

Timeline Analysis Exercise 1-4 (1)

Find suspicious $EA attributes

• $EA attribute is not used regularly. So it is unnatural that files contain
$EA attribute.

• When the $EA attribute is non-resident, it become more suspicious.
Because malware usually needs least tens of kilo bytes in size. Non-
resident $EA attribute can have enough size to hide malware.

• Let's find files which has non-resident $EA attributes.

Copyright Internet Initiative Japan Inc. 58

Timeline Analysis Exercise 1-4 (2)

Find suspicious $EA attributes

• "Mft-Ea-Entries_2018-02-25_00-18-39.csv" in Mft2Csv output folder is list of MFT
entries which contain $EA attributes.

• But separator of the header line in the original file is incorrect. So use modified
one. The name of the modified version is "Mft-Ea-Entries_2018-02-25_00-18-
39_mod.csv ". Let's open this!

• This list has the "EaValueLength" column. When its value is "0", it means that the
content of the $EA attribute is "non-resident". In other words, those $EA attributes
have data over hundreds of bytes.

Copyright Internet Initiative Japan Inc. 59

Timeline Analysis Exercise 1-4 (3)

Find suspicious $EA attributes

• You can find the names of files which contain non-resident $EA attribute by
matching "MftRef" column in the "Mft-Ea-Entries_2018-02-25_00-18-39.csv" with
"HEADER_MFTREcordNumber" column in the "Mft_2018-02-25_00-18-39.csv".

Copyright Internet Initiative Japan Inc. 60

You can simply copy the filter commands from the file
"Training_Materials\TimelineAnalysis\Win7\win7-filter-samples.txt".

Without Carriage-return

Timeline Analysis Exercise 1-4 (4)

• Some variants of a Trojan Zeroaccess are known for hiding malicious
payload in $EA attribute of "\Windows\System32\services.exe".

• If it was a real case, you should extract the content of $EA by using
disk image parsing tool such as the sleuthkit. And check it.

• A folder named "\Windows\CSC\v2.0.6" also has non-resident $EA
attribute. From the path, the folder seems to be related to client-side
caching feature. Since we confirmed that the attribute was set on
several freshly installed Windows environments, it can be said that we
can regard it as benign.

Copyright Internet Initiative Japan Inc. 61

Timeline Analysis Exercise 1-4 (5)

• Notice:
• Microsoft uses $EA attribute of system binaries for secure booting. Then,

thousands of system binaries have $EA attribute in Windows 8 or later.

• But, all $EA attributes of those system binaries are "resident". They contain
short string value less than about 100 bytes.

• Thus files containing non-resident $EA attributes should be considered to be
suspicious.

Copyright Internet Initiative Japan Inc. 62

NTFS 101: $Logfile

• $Logfile
• This is a transaction log for recovering filesystem after such as accidental

power fail.

• Windows records events below in $Logfile.
• Creation, deletion, and modification of files and folders.

• Modification of $MFT entries.

• This file is placed in the root of NTFS volumes.

Copyright Internet Initiative Japan Inc. 65

NTFS 101: $UsnJrnl

• $UsnJrnl
• This is a journal log. In other words, it is change log for files and folders.

• It is used to determine history of a specific file or folder. "File history" feature
of Windows 8 or later uses this function.

• $UsnJrnl contains "$Max" and "$J".
• $Max is metadata of this journal log.

• $J is actual change log records.

• $UsnJrnl:$J usually contains information of filesystem history more longer than
$Logfile.

Copyright Internet Initiative Japan Inc. 66

NTFS Log Parsing Tools (1)

• NTFS Log Tracker [7]
• It parses $Logfile and $UsnJrnl:$J.
• It can dump $UsmJrnl records from

unallocated disk spaces.
• GUI viewer with simple filter is

implemented.
• It resolves file paths by parsing $MFT.
• It can store parsed data as SQLite DB

file and load it again.
• It parses TimeStamp fields on the

second time scale. Sometimes that is
not enough to sort journal events
because journal events can be logged
over hundreds times within a second.

Copyright Internet Initiative Japan Inc. 67

NTFS Log Parsing Tools (2)

• USN Analytics [8]
• It can parse records of $UsnJrnl that were extracted by "Bulk Extractor with

Record Carving".

• It generates not only parsed journal log, but also useful report that summarize
prefetch entries, opened file entries, executable files, and so on.

• It parses TimeStamp fields on the millisecond time scale.

Copyright Internet Initiative Japan Inc. 68

Timeline Analysis Exercise 2-1 (1)

Reveal the sequence of the infection

• What did we find in the exercise before?
• The system could be infected with a variant of Trojan Zeroaccess.

• $EA attribute of \Windows\System32\services.exe could have been injected
malicious payload by the trojan.

• Let's find which file caused the infection and when it happened by
examining the output of NTFS Log Tracker.

Copyright Internet Initiative Japan Inc. 69

Timeline Analysis Exercise 2-1 (2)

Reveal the sequence of the infection

• Open the below file with CSVFileView.

• "TimelineAnalysis\Win7\ntfs-log-tracker-output\UsnJrnl.csv"

• This is results of parsing $UsnJrnl:$J.

• In this case, there are few entries in "Logfile.csv" which is results of
parsing $Logfile. So we check UsnJrnl.csv only.
• These csv files are converted from SQLite DBs which are created by NTFS Log

Tracker.

Copyright Internet Initiative Japan Inc. 70

Timeline Analysis Exercise 2-1 (3)

Reveal the sequence of the infection

• UsnJrnl.csv has following 7 columns.
• Timestamps

• Filename

• FullPath

• EventInfo

• File Attribute

• USN

• Sourceinfo

Copyright Internet Initiative Japan Inc. 71

Timeline Analysis Exercise 2-1 (4)

Reveal the sequence of the infection

• Let's find the file which caused the initial infection and reveal the
sequence of events.

• Hints:
• According to the result of exercise 1-4, we suspect that the file

"\Windows\System32\services.exe" is infected with Trojan Zeroaccess.

• In this case, we focus on the files placed in ttaro's desktop. Not always.
Generally we get those kind of information by other way such as examining
auto-start locations or program execution artifacts.

• Prefetch files imply program execution history. They are placed in
"\Windows\Prefetch"

Copyright Internet Initiative Japan Inc. 72

Timeline Analysis Exercise 2-1 (5)

Reveal the sequence of the infection

• In this case, we should apply Display Filter like this.

• This filter can display events we are interested in.

Copyright Internet Initiative Japan Inc. 73

Operator Field name Condition Value

FullPath Contains \Users\ttaro\Desktop

OR FullPath Contains \Windows\Prefetch\

OR FullPath = \Windows\System32\services.exe

Without Carriage-return

Timeline Analysis Exercise 2-1 (6)

Copyright Internet Initiative Japan Inc. 74

Reveal the sequence of the infection

Timestamp Target File Action What does it mean?

2018-02-25
00:00:52

\Users\ttaro\Desktop\ea.zip File was created.

2018-02-25
00:01:01

\Users\ttaro\Desktop\ea.exe File was created. Since its own name, the file seems to be
extracted from zip file above.

2018-02-25
00:01:39

\Windows\Prefetch\EA.EXE-
67BB4897.pf

File was created. ea.exe was executed. And this is the first
execution of ea.exe.

2018-02-25
00:01:39

\Windows\Prefetch\CONSENT.EXE-
531BD9EA.pf

File was modified consent.exe is related to UAC. It seems that
the ea.exe required admin rights.

2018-02-25
00:01:40

\Users\ttaro\Desktop\ea.exe File was deleted. ea.exe was deleted immediately after its
execution.

2018-02-25
00:01:40

\Windows\Prefetch\CMD.EXE-
4A81B364.pf

File was modified cmd.exe was executed. It could be launched
by ea.exe since its execution time. Malware
sometimes launch such as cmd.exe.

2018-02-25
00:01:40

\Windows\Prefetch\CONHOST.EXE-
1F3E9D7E.pf

File was modified conhost.exe was executed. It could be
launched by ea.exe since its execution time.
Malware sometimes launch such as
conhost.exe with cmd.exe.

2018-02-25
00:01:40

\Windows\System32\services.exe $EA attr was
changed.

$EA attribute of the target file was modified.

Timeline Analysis Exercise 2-1 (7)

Copyright Internet Initiative Japan Inc. 75

Reveal the sequence of the infection

• ea.exe was deleted immediately after it was executed.

• Its execution, deletion, and the modification of $EA on services.exe
happened almost the same time.

• cmd.exe and conhost.exe were executed between execution of ea.exe and
modifiction of $EA on services.exe. It seems to be that they are launched by ea.exe
and did something such as manipulation of services.exe and so on.

• Execution of consent.exe seems to be UAC for ea.exe. ea.exe could have required
the administrative rights.

• We can assume the ea.exe is related to the infection of services.exe.

Timeline Analysis Exercise 2-2

View the summary report of USN Analytics

• The below is output folder of USN Analytics.
• "TimelineAnalysis\Exercise\Win7\usn-analytics-output"

• It contains useful summary report named "usn-analytics-report.txt".

• Let's open the file with notepad or your favorite text editor/viewer.
You can find lists as below.
• prefetch exe, opened files, job, exe, dll, scr, ps1, vbe/vbs, bat, tck, PSEXESVC

• The report helps you to get essence of the journal logs briefly.

Copyright Internet Initiative Japan Inc. 76

NTFS 101: $I30 and INDX (1)

• $I30 is metadata file which placed in each folder.

• It contains $INDX_ROOT and $INDX_ALLOCATION attributes. These
attributes have information about files and folders in the folder such as
name, timestamps, and size.

• Windows uses only $INDX_ROOT when number of files and folders
placed in the folder is small. If the number becomes larger, Windows
uses both of those.

Copyright Internet Initiative Japan Inc. 77

NTFS 101: $I30 and INDX (2)

• $INDX_ALLOCATION attributes consist of the "records". Each record
contains multiple "record entry". Each record entry has information of
the file or folder like $FN attribute such as name, timestamps, and size.

• Each record is fixed to 4096 bytes in size.

Copyright Internet Initiative Japan Inc. 78

Signature
"INDX"

Record Entry
1

Record Entry
2

Record Entry
3

Record
Entry X

Unused space...

Signature
"INDX"

Record Entry
Y

Record Entry
Y+1

Record Entry
Z

Unused space...

Each record has 4096 bytes in size.

Record 1

Record 2

$INDX_ALLOCATION attribute

NTFS 101: $I30 and INDX (3)

• When the total size of record entries within a record become larger than 4096 bytes, The record is
divided into two.

• At the time, the posterior half of the record entries are moved to the new record. Then the space
after the last record entry become "unused space". But data of the original record entries remain
until Windows overwrite those with other record entries. Even if the files or folders related to the
record entries will be deleted.

Copyright Internet Initiative Japan Inc. 79

Signature
"INDX"

Record Entry
1

Record Entry
10

Record Entry
11

Record 1

Record 1

Signature
"INDX"

Record Entry
11

Record Entry
19

Unused spaceRecord 2

Record
Entry 18

.

.

.

.

.

.

Signature
"INDX"

Record Entry
1

Record Entry
10

Record Entry
11

Record
Entry 18

.

.

.

.

.

.

.

.

.

Unused space.
But it contain the data of
original record entries.

NTFS 101: $I30 and INDX (4)

• We can get information about deleted files and folders from old record entries
placed in "unused spaces".

• That is sometimes useful. When $MFT, $Logfile, and $UsnJrnl contain no evidence
about a file you seek for, you should examine $INDX_ALLOCATION attributes.

Copyright Internet Initiative Japan Inc. 80

Record 1

Signature
"INDX"

Record Entry
11'

Record Entry
19'

Unused spaceRecord 2

Signature
"INDX"

Record Entry
1

Record Entry
10

Record Entry
11

Record
Entry 18

.

.

.

.

.

.

.

.

.

After some time, original files and folders related to these
entries will be deleted, and these entries will be updated for
other new files and folders.

Unused space.
But it contain the data of
original record entries.

INDX parsing tools (1)

• Indx2Csv [9]
• Indx2Csv is a parser for INDX

records.

• Its output contains details of
several types of information
such as names, timestamps,
sizes, and so on.

• The author recommend to
use IndxCarver to collect data
of INDX records from disk
images.

Copyright Internet Initiative Japan Inc. 81

INDX parsing tools (2)

Copyright Internet Initiative Japan Inc. 82

• INDXParse [10]
• It parses a single $I30 metadata file placed in each folder.

• It is useful for understanding $I30.

INDX Carving Tools (1)

• IndxCarver [11]
• This tool dumps individual INDX records from unallocated spaces.

• We can recover old INDX records to get information about deleted files and
folders with this tool.

Copyright Internet Initiative Japan Inc. 83

INDX Carving Tools (2)

• Bulk Extractor with Record Carving [6]
• We mentioned it before as a $MFT carving tool. It

also contains scanner plug-ins for records of $MFT,
$LogFile, $UsnJrnl$J, $INDEX_ALLOCATION, and
utmp structure.

• It can recover those records from disk images.

Copyright Internet Initiative Japan Inc. 84

Timeline Analysis Exercise 3 (1)

• Let’s assume these conditions are given.
• You are investigating a compromised Windows client.

• You have already known that attackers installed a RAT to the client.
And they also installed some utility programs for their action such
as checking environment, lateral movement, and so on. (Since you
found that from other artifacts.)

• Those utility programs were installed to the path below.
• "\ProgramData\s"

Copyright Internet Initiative Japan Inc. 87

Timeline Analysis Exercise 3 (2)

• Let's answer to the questions below by investigating artifacts placed in
"Training_Materials\TimelineAnalysis\Win10".

1. How can you confirm that the folder "\ProgramData\s" really existed?

2. Are there any suspicious point in creation or deletion of the folder? If there
are, what do they mean?

Copyright Internet Initiative Japan Inc. 88

Timeline Analysis Exercise 3 (3)

How do you confirm that the folder "\ProgramData\s" really existed?

• There are no entry related to the folder "\ProgramData\s" in $MFT
and $Logfile, but $UsnJrnl contains it. So you can find the deletion
log in output of ntfs-log-tracker.

• Let's check data under the following folder.
• Training_Materials\TimelineAnalysis\Win10\ntfs-log-tracker-outpunt

Copyright Internet Initiative Japan Inc. 89

Timeline Analysis Exercise 3 (4)

How do you confirm that the folder "\ProgramData\s" really exist?

• In this case, UsnJrnl.csv is too large to open with CSVFileView and
other CSV viewers. (Ordinary CSV viewers can not handle logs over
about 320,000 lines well.)

• To handle the large CSV data, we should use ElasticSearch and
Kibana.

Copyright Internet Initiative Japan Inc. 90

Timeline Analysis Exercise 3 (5)

View the journal log with ElasticSearch and Kibana.

1. Double-click the bat file below to launch ElasticSearch and Kibana.
• "elasticsearch\es_kibana.bat"

2. Generate configuration file for loading the CSV file "UsnJrnl.csv" into
ElasticSearch by executing following command at the folder "elasticsearch".

Copyright Internet Initiative Japan Inc. 91

embulk.bat guess .\seed-ntfs-log-tracker.yml -o config-ntfs-log-tracker.yml

This is the seed file which contains the path
to the CSV file, some definitions and so on.

This is the name of the file to generate.

Timeline Analysis Exercise 3 (6)

View the journal log with ElasticSearch and Kibana.

3. Modify the generated configuration file
"config-ntfs-log-tracker.yml" like following.
• Just add this line since we handle the timestamps

as JST (UTC+9) in this case.

Copyright Internet Initiative Japan Inc. 92

default_timezone: 'Asia/Tokyo'

Timeline Analysis Exercise 3 (7)

View the journal log with ElasticSearch and Kibana.

4. Test the modified configuration file by following command. You can check
the output format.

5. Load data from the CSV file into ElasticSearch by executing command below.

6. Finally, open the following URL with Web browser such as Edge.
• http://localhost:5601/

Copyright Internet Initiative Japan Inc. 93

embulk.bat preview config-ntfs-log-tracker.yml

embulk.bat run config-ntfs-log-tracker.yml -c diff.yml This file is to read and write the next configuration diff.
By using this file, you can avoid import duplication.

Timeline Analysis Exercise 3 (8)

View the journal log with ElasticSearch and Kibana.

7. Click "Management" in left menu, then click "Index Patterns" to move to the
"Index Patterns" page.

Copyright Internet Initiative Japan Inc. 94

(1) Click "Management"
(2) Click "Index Patterns"

Timeline Analysis Exercise 3 (9)

View the journal log with ElasticSearch and Kibana.

8. Input string "ntfslogtracker-*" as index pattern, then click "Next step" to
create index for imported data. This string indicate the indexes which we use.

Copyright Internet Initiative Japan Inc. 95

(1) Input "ntfslogtracker-*"

(2) Click "Next step"

Timeline Analysis Exercise 3 (10)

View the journal log with ElasticSearch and Kibana.

9. Select "TimeStamp" and click "Create index pattern" to define time filter
field.

Copyright Internet Initiative Japan Inc. 96

(2) Click "Create index pattern"

(1) Select "TimeStamp" as Time filter filed.

Timeline Analysis Exercise 3 (11)

View the journal log with ElasticSearch and Kibana.

10. Move to the "Advanced Settings" page to set some options.

Copyright Internet Initiative Japan Inc. 97

(1) Click "Management"
(2) Click "Advanced Settings"

Copyright Internet Initiative Japan Inc.

Timeline Analysis Exercise 3 (12)

View the journal log with ElasticSearch and Kibana.

11. Modify options like below.
• Change discover:sampleSize from 500 to 10000.

• Change state:storeInSessionStorage from false to true.

• OK, we have finished the setting. Let's back to the exercise 3. 98

Timeline Analysis Exercise 3 (13)

• Back to the exercise 3. Let's reconfirm questions below.
1. How can you confirm that the folder "\ProgramData\s" really existed?

2. Are there any suspicious point in creation or deletion of the folder? If there
are, what do they mean?

Copyright Internet Initiative Japan Inc. 99

Timeline Analysis Exercise 3 (14)

How can you confirm that the folder "\ProgramData\s" really exist?

• First, we should specify the time range to search.

• In this case, we use the largest range.

Copyright Internet Initiative Japan Inc. 100

(1) Click "Discover".

(2) Click here to set time range.

(3) Chose the largest range.

Timeline Analysis Exercise 3 (15)

How can you confirm that the folder "\ProgramData\s" really exist?

• To search the data with the path, input "\\ProgramData\\s" as query and
execute.

Copyright Internet Initiative Japan Inc. 101

Input "\\ProgramData\\s" as query.

Timeline Analysis Exercise 3 (16)

How can you confirm that the folder "\ProgramData\s" really exist?

• To make the result easy to view, add fields by clicking the link in order below.

Copyright Internet Initiative Japan Inc. 102

(1)

(4)

(2)

(3)

(5)

Timeline Analysis Exercise 3 (17)

How can you confirm that the folder "\ProgramData\s" really exist?

• This is the deletion event of the folder. It can be evidence of that the folder
existed.

Copyright Internet Initiative Japan Inc. 103

Timeline Analysis Exercise 3 (18)

Are there any suspicious point in creation or deletion of the folder? If
there are, what do they mean?

• Let's view the events logged around the deletion time.

Copyright Internet Initiative Japan Inc. 104

(1) Click here to change the time range.

(2) Click here to change time range with absolute format.

(3) Set time range around the folder deletion time.

(4) Then, click the "Go" button.

(5) Finally, clear the query and execute it.

Timeline Analysis Exercise 3 (19)

Are there any suspicious point in creation or deletion of the folder? If
there are, what do they mean?

• Sort data by USN since TimeStamp field does not have enough time resolution.
• NTFS Log Tracker parses TimeStamp fields on the second time scale. That is not enough to

sort journal events because journal events can be logged over hundreds times within a
second.

• Then, let's check events which were logged at around the deletion event of the
folder.

Copyright Internet Initiative Japan Inc. 105

Click this upper arrow to sort data by USN.

Timeline Analysis Exercise 3 (20)

Are there any suspicious point in creation or deletion of the folder? If
there are, what do they mean?

Copyright Internet Initiative Japan Inc. 106

<snip>

The logs show that files were overwritten, then renamed many
times, and deleted.

This is the deletion log.

Timeline Analysis Exercise 3 (21)

Are there any suspicious point in creation or deletion of the folder? If there are,
what do they mean?

• Consequently, we can say that many files were rewritten, then renamed many
times and deleted.

• Such operations are known as the deletion method of some data-erasing tools,
such as SDelete and CClearner.

• In this case, we can determine that attackers used kinds of data-erasing tool to
delete their tools.

Copyright Internet Initiative Japan Inc. 107

To be continued…

Copyright Internet Initiative Japan Inc. 108

