
Reverse Engineering Malware
with Automated Scripts

What we found in malware analysis so far

• From surface analysis:
• Its file type is a dynamic link library (DLL).
• It has many export functions such as "GnrkQr". We also found that the

malware was set to launch with the string "GnrkQr" by examining the output of
Autoruns.

• It imports only 4 modules: KERNEL32.dll, USER32.dll, GDI32.dll, and
ADVAPI32.dll.

• From dynamic analysis:
• It tries to connect to "tyo1964.com:443" automatically. The server seems to be

a command and control server.
• The traffic to "tyo1964.com:443" contains characteristic strings. For example,

its http header contains "X-Session", "X-Status", "X-Size" and "X-Sn".
• It uses the victim organization's private proxy server.

2Copyright Internet Initiative Japan Inc.

What we have not found yet

• We have not revealed the malware's capabilities that the attacker
could do in the incident.

• We have not known where the malware leaves evidence for execution
of those capabilities on.

• If we find one of those at least, we can enhance the analysis result.
• For example, a certain RAT has a file uploading function to an infected host.

When a file is uploaded, the malware creates a file that the name ends with
".tmp" temporary with the original file. If you know this by reverse
engineering, you can discover the file that the attacker has sent by analyzing
the NTFS journal file with forensic analysis.

• To achieve such purposes, we should perform reverse engineering.
Copyright Internet Initiative Japan Inc. 3

What should we do next?

• We will examine APIs that the malware uses, and investigate how the
malware uses them to reveal its capabilities.

• We will find characteristic strings by examining strings contained in the
malware. Investigating those strings helps us to get such as mutex,
paths of related files, and protocol headers that might be effective
evidence. And we often identify the name of the malware from those
evidence.

Copyright Internet Initiative Japan Inc. 4

Reverse engineering tools

• IDA is the de facto standard tool for reverse engineering.

• We will investigate the malware using IDA's scripting capabilities.

• If you do not have a valid copy of IDA Pro, you can use IDA Evaluation
Version for exercises.

Copyright Internet Initiative Japan Inc. 5

https://www.hex-rays.com/products.shtml

Opening the malware with IDA (1)

• Drag the malware and drop to the IDA color icon on your desktop
of the analysis VM for opening.

Copyright Internet Initiative Japan Inc. 6

Copyright Internet Initiative Japan Inc.

Opening the malware with IDA (2)

7

IDA View(Graph view):
This view shows disassembly code
graphically. In this view, boxes represent
"basic blocks". Those are code chunks
separated by particular instructions such
as jmp and ret.
The view makes you understand at a
glance such as conditional branches and
loops.
You can use the space key to toggle
between graph view and text view. Text
view simply shows flat and typical
disassembly code.

Functions window:
This window lists functions
parsed by IDA. If you click
one of them, IDA view will
jump to the address of the
function.

Examining imported APIs

Copyright Internet Initiative Japan Inc. 8

• Click the "Imports view"
tab.

• We have already known
APIs included in the
malware by performing
surface analysis though,
we examine this for the
purpose of getting used
to general IDA operations.

Imports view:
Imported APIs that the executable uses
are listed in this view. Addresses and
library names corresponding to those
APIs are also displayed.

The results of the examining imported functions

• The "Imports view" tab shows:
• Only four libraries are imported: KERNEL32, USER32, GDI32 and ADVAPI32.

• This looks strange. Typically, Windows applications that can communicate with
TCP/IP require one or more libraries loaded that are WS2_32, WinHttp, and
WinINet.

• Therefore, the malware author might use some tricks to hide libraries.

Copyright Internet Initiative Japan Inc. 9

Viewing raw strings

• Press the Shift+F12 keys to open the strings window.

• By default, it shows only C-style strings. To view unicode strings, right-
click and choose "Setup...", then check "Unicode".

• A C-style string is an array of characters that uses null-terminator (\0).

Copyright Internet Initiative Japan Inc. 10

The results of the viewing raw strings

• The "Strings window" shows:
• We were able to find only a few strings related to HTTP headers, methods, and

query parameters.

• Because of that, the malware author might use some tricks to hide strings.

Copyright Internet Initiative Japan Inc. 11

We have found a new issue

• By examining imported functions and raw strings:
• API names and HTTP related strings that are actually used in the malware did

not appear.

• Why？
• Are important characters obfuscated?

• Is the malware packed? – Packing means compression and/or encryption of
executable code.

• Let's find the decode function on the assumption that important
strings are obfuscated.

Copyright Internet Initiative Japan Inc. 12

The strategy to expose tricks

• The typical decode function have
characteristics of:

1. Being referenced from a lot of functions
• Whenever the program uses obfuscated strings, the

decode function is called.

2. A XOR loop in the function
• Using XOR is a established way of implementing

encryption and obfuscation including major encryption
algorithms.

• Let's find the function that has both of above.

• We try this way manually to understand the
logic here. Later, we will introduce several tools
such as FLOSS and IDA Scope for automating
this method.

Copyright Internet Initiative Japan Inc. 13

Program

The decode function

......

XOR
......

......

retn

......

Function B
Function C

Function D

Function F

Function G
Function H

Function I

Function E

......

[2] A
function

has a XOR
instruction
in a loop.

[1] Many
functions

referring to

a function.

Function A

Finding the decode function with IDC

Copyright Internet Initiative Japan Inc.

• IDC: A C-like scripting language for automating IDA.
• IDAPython: Python bindings for IDA. This is not available for evaluation version of

IDA.

• Reference and tutorials:
• https://www.hex-rays.com/products/ida/support/idadoc/162.shtml
• https://hex-rays.com/products/ida/support/tutorials/idc/index.shtml

• How to execute:
• There are two ways to execute IDC scripts. At this time, we use former one.
• Save your script as text file, then press the Alt+F7 keys on IDA to load and execute the script

file.
• Press the Shift+F2 keys on IDA to open the "Script Execute" window, then write and execute

your script on the window.

• We prepared sample scripts. Let's unzip "idc.zip" on your desktop.
• We also prepared scripts written in IDAPython as "idapython.zip". If you have a

valid copy of IDA Pro and are familiar with writing Python, you can use this instead
of IDC scripts. 14

IDC Tutorial [1]:
Enumerating functions
• Let's start exercises for using IDC scripts with a easy sample.

• This script enumerates functions with the start and the end of
addresses.

Copyright Internet Initiative Japan Inc. 15

#include <idc.idc>

static main(){
auto addr, end, name, ea;
addr = 0;
for (addr = NextFunction(addr); addr != BADADDR; addr = NextFunction(addr)){

name = Name(addr);
end = GetFunctionAttr(addr, FUNCATTR_END);
Message("Function: %s, starts at %x, ends at %x\n", name, addr, end);

}
}

idclab1.idc

IDC Tutorial [2]:
Parsing mnemonics and operands
• This script parses the first

function line by line and
displays each mnemonic and
operand.

Copyright Internet Initiative Japan Inc. 16

#include <idc.idc>

static main(){
auto addr, end, name, ea, mnem, op1, op2;
addr = 0;
for (addr = NextFunction(addr); addr != BADADDR; addr = NextFunction(addr)){

name = Name(addr);
end = GetFunctionAttr(addr, FUNCATTR_END);
Message("Function: %s, starts at %x, ends at %x\n", name, addr, end);
ea = addr;
mnem = GetMnem(ea);
op1 = GetOpnd(ea,0);
op2 = GetOpnd(ea,1);
Message(" %x: %s %s, %s\n", ea, mnem, op1, op2);
while(ea<end){

ea = FindCode(ea, SEARCH_DOWN | SEARCH_NEXT);
mnem = GetMnem(ea);
op1 = GetOpnd(ea,0);
op2 = GetOpnd(ea,1);
Message(" %x: %s %s, %s\n", ea, mnem, op1, op2);

}
break;

}
}

Mnemonics are representations of low-
level machine instructions in assembly
language. Those are abbreviations for
each operation.

Operands are arguments for mnemonics.
Operands specify the destination and the source
of each operation represented by mnemonics.idclab2.idc

IDC Tutorial [3]:
Adding colors and changing names
• This script parses the first

function line by line and
changes colors (#66ccff/light
blue) for lines that contain a
call instruction. It also
changes the name of the
function.

Copyright Internet Initiative Japan Inc. 17

#include <idc.idc>

static main(){
auto addr, end, name, ea, mnem;
addr = 0;
for (addr = NextFunction(addr); addr != BADADDR; addr = NextFunction(addr)){

name = Name(addr);
end = GetFunctionAttr(addr, FUNCATTR_END);
Message("Function: %s, starts at %x, ends at %x\n", name, addr, end);
while(ea<end){

ea = FindCode(ea, SEARCH_DOWN | SEARCH_NEXT);
mnem = GetMnem(ea);
if(strstr("call", mnem) == 0) SetColor(ea, CIC_ITEM, 0xffcc66);

}
name = sprintf("checked_sub_%x", addr);
MakeNameEx(addr, name, SN_NOCHECK);
break;

}
}idclab3.idc

Finding XOR instructions [1]

• This script changes colors for
lines that contain a XOR
instruction and changes names
of functions that contain at least
one XOR instruction.

Copyright Internet Initiative Japan Inc. 18

#include <idc.idc>

static main(){
auto addr, end, name, ea, mnem;
addr = 0;
for (addr = NextFunction(addr); addr != BADADDR; addr = NextFunction(addr)){

name = Name(addr);
end = GetFunctionAttr(addr, FUNCATTR_END);
ea = addr;
while(ea<end){

ea = FindCode(ea, SEARCH_DOWN | SEARCH_NEXT);
mnem = GetMnem(ea);
if(strstr("xor", mnem) == 0){

SetColor(ea, CIC_ITEM, 0xffcc66);
name = sprintf("xor_sub_%x", addr);
MakeNameEx(addr, name, SN_NOCHECK);
Message("Function: %s has XOR at %x(%s)\n", name, ea);

}
}

}
}idclab4.idc

Finding XOR instructions [2]

• We found 185 functions that contain at least one XOR instruction in the malware.

• But, the purpose of some XOR instructions is to clear a register. Those are not a part of the XOR
loop in the decode function. We should filter them out.

Copyright Internet Initiative Japan Inc. 19

Press the Ctrl+F keys and type "xor" to
count functions including a xor instruction.

The XOR instruction with the same operands (e.g.
xor eax, eax) means to clear the register to zero.

P Q P XOR Q

1 1 0

1 0 1

0 1 1

0 0 0

Finding XOR instructions [3]

• This script changes colors for
lines that contain a XOR
instruction, changes names of
functions that contain at least
one XOR instruction, and filters
out XOR instructions that clear a
register.

Copyright Internet Initiative Japan Inc. 20

#include <idc.idc>

static main(){
auto addr, end, name, ea, mnem, op1, op2;
addr = 0;
for (addr = NextFunction(addr); addr != BADADDR; addr = NextFunction(addr)){

name = Name(addr);
end = GetFunctionAttr(addr, FUNCATTR_END);
ea = addr;
while(ea<end){

ea = FindCode(ea, SEARCH_DOWN | SEARCH_NEXT);
mnem = GetMnem(ea);
if(strstr("xor", mnem) == 0){

op1 = GetOpnd(ea,0);
op2 = GetOpnd(ea,1);
if(strstr(op1,op2) == 0) continue;
SetColor(ea, CIC_ITEM, 0xffcc66);
name = sprintf("xor_nonZero_sub_%x", addr);
MakeNameEx(addr, name, SN_NOCHECK);
Message("Function: %s has XOR at %x(%s)\n", name, ea, mnem);

}
}

}

idclab5.idc

Finding XOR instructions [4]

• A number of functions containing a XOR instruction has been 58. But, this is still too many to
examine each one.

• We count references for each function called from other functions based on the initial strategy. We
can use "cross-references/xrefs" feature of IDA to do that.

Copyright Internet Initiative Japan Inc. 21

In the graph view, you can press the X key at the start of
a function to display "cross-references/xrefs". It shows a
list of functions that calls the function you choose.

Press the Ctrl+F keys and type
"xor_nonZero" to count functions which
are renamed by the script "idclab5.idc".

To be continued…

