D wizSafe

Reverse Engineering Malware
with Automated Scripts

‘D wizSafe

What we found in malware analysis so far

* From surface analysis:
* |ts file type is a dynamic link library (DLL).

* |t has many export functions such as "GnrkQr". We also found that the
malware was set to launch with the string "GnrkQr" by examining the output of
Autoruns.

* [t imports only 4 modules: KERNEL32.dll, USER32.dll, GDI32.dll, and
ADVAPI32.dll.

* From dynamic analysis:

* |t tries to connect to "tyo1964.com:443" automatically. The server seems to be
a command and control server.

e The trafficto "tyo1964.com:443" contains characteristicstrings. For example,
its http header contains "X-Session", "X-Status", "X-Size" and "X-Sn".

* |t uses the victim organization's private proxy server.

‘D wizSafe

What we have not found yet

* We have not revealed the malware's capabilities that the attacker
could do in the incident.

 \We have not known where the malware leaves evidence for execution
of those capabilities on.

* |f we find one of those at least, we can enhance the analysis result.

* Forexample, a certain RAT has a file uploading function to an infected host.
When a file is uploaded, the malware creates a file that the name ends with
"tmp" temporary with the original file. If you know this by reverse
engineering, you can discover the file that the attacker has sent by analyzing
the NTFS journal file with forensic analysis.

* To achieve such purposes, we should perform reverse engineering.

D wizSafe

What should we do next?

* We will examine APls that the malware uses, and investigate how the
malware uses them to reveal its capabilities.

* We will find characteristic strings by examining strings contained in the
malware. Investigating those strings helps us to get such as mutex,
paths of related files, and protocol headers that might be effective
evidence. And we often identify the name of the malware from those

evidence.

D wizSafe

Reverse engineering tools

* IDA is the de facto standard tool for reverse engineering.
* We will investigate the malware using IDA's scripting capabilities.

* |f you do not have a valid copy of IDA Pro, you can use IDA Evaluation
Version for exercises.

https://www.hex-rays.com/products.shtml

Copyright Internet Initiative Japan Inc. 5

‘D wizSafe

Opening the malware with IDA (1)

* Drag the malware and drop to the IDA color icon ﬁon your desktop
of the analysis VM for opening. idag.exe

D wizSafe

Opening the malware with IDA (2)

ﬁ IDA - perfmon.dll C:¥Users¥ttaro¥Desktop¥perfmon.dll
File Edit Jump Search View Debugger Options Windows Help

tH &= BHA 5) « BQ At F-#F e X P 0D Nodebugger
1

j j Data M Reeular function Unaxplorad Instruction
7l Functions window 2 8 x [IDA View=A DO = Hax View—1

Extarnal svmbol

I Structures

Eil ul's

Imports ® Exports

Function name
F | ek 10NN NANN

Functions window:

This window lists functions

parsed by IDA. If you click

one of them, IDA view will —

jump to the address of the

function. LBttt Do T

GnrkQr

ub 1000187A
DIlEntryPoint
GnrkUsmc

nEANaNA
S3 33

=

)
=y
o

GnrkB]t\ka
| GnrkBmoaar

R mlm[m[whh[‘w.[w]

Line 1 of 702

£ Graph overview o & x

IDA View(Graph view):

This view shows disassembly code
graphically. In this view, boxes represent
"basic blocks". Those are code chunks
separated by particularinstructions such

“ asjmp and ret.

The view makes you understandat a
glance such as conditional branches and
loops.

You can use the space key to toggle
between graph view and text view. Text
view simply shows flatand typical
disassembly code.

Examining imported APIs

 Click the "Imports view"
tab.

* We have already known
APls included in the
malware by performing
surface analysis though,
we examine this for the
purpose of getting used
to general IDA operations.

(@)

> §
S wizsSafe

T IDA View-A S Hex View-1 & Structures Enums % Imports O # Exports
Address Ordinal Name Library
e 10028000 IsValidSid ADVAPI32

£| 10028004 SetSecurityDescriptorSacl ADVAPI32
% 10028008 RegDis . . DVAPI32
Eamozsooc FileEnc 1Mports view: DVAPI32
%= 10028010 Lookug DVAPI32
E%wozsom ol Impqrted -APIs'thz?t the executable uses Siyfpis
¥=] 10028018 Logont arelisted in this view. Addresses and DVAPI32
=) 1002801C RegEnt |: : DVAPI32
B 10028020 StaqrtSe library names corresponding to those ;7.5,35
%=] 10028024 Initiate. AP|s are also displayed. DVAPI32
t*a 10028028 SetKerrc.ww R, y ~DVAPI32
¥=] 1002802C AreAllAccessesGranted ADVAPI32
¥=] 10028030 QueryServiceConfigA ADVAPI32
%Z] 10028034 LookupPrivilegeNameA ADVAPI32
%=] 10028038 RegOpenUserClassesRoot ADVAPI32

*z] 1002803C ImpersonateLoggedOnUser ADVAPI32

£] 10028040 ReadEventLogW ADVAPI32
¥=) 10028044 RegEnumKeyExA ADVAPI32
Ea 1002804C CloseFigure GDI32
%Z| 10028050 SetBitmapBits GDI32
E’a 10028054 GetPixel GDI32
¥=] 10028058 PlayMetaFileRecord GDI32
¥=] 1002805C GetMiterLimit GDI32
‘;% 10028060 GetEnhMetaFileHeader GDI32
% 10028064 SetICMProfileA GDI32
%=1 1002806 A olorSpace GDI32

B bahoganet Initiative EEHIRCRC Gbiz2 8

‘D wizSafe

The results of the examining imported functions

* The "Imports view" tab shows:
* Only four libraries are imported: KERNEL32, USER32, GDI32 and ADVAPI32.

* This looks strange. Typically, Windows applications that can communicate with
TCP/IP require one or more libraries loaded that are WS2 32, WinHttp, and
WinINet.

* Therefore, the malware author might use some tricks to hide libraries.

Viewing raw strings

e Press the Shift+F12 keys to open the strings window.

* By default, it shows only C-style strings. To view unicode strings, right-
click and choose "Setup...", then check "Unicode".

* A C-style string is an array of characters that uses null-terminator (\O).

TIDA View-A

Address

i text:100273D8
‘s’ .rdata:100281CB
‘s’ .rdata:1002822C
‘s’ .rdata:10028264
‘s’| .rdata:100282FB
‘s’ .rdata:1002830C
‘s’ .rdata:100283A1
‘s’ .rdata:100283C8
‘s’ .rdata:100283D0
‘s’ .rdata:;100283D8
‘s’ .rdata:10028414
‘s’| .rdata:10028420
‘s’ .rdata:10028440
‘s’ .rdata:10028450
‘s’ .rdata:10028458
‘s’ .rdata:100284AC

‘s’| .rdata:10028521
N dabed AATOE A

2 Hex View—1
Length

00000025
00000006
00000005
0000000A
00000005
0000000D
00000006
00000008
00000007
0000000A
0000000A
00000009
00000005
00000007
0000000A
00000008

00000005
ARARARMAT

Type

aAlakalalalalalalakalakalalakeaEalal

Al Structures = Enums fl Imports

String

CONNECT tyo1964.com:443 HTTP/1.0¥r¥n¥r¥n
TgLUS+
VT
Imislp
Osl¥t}
EINIGIEN
¥nP:¥rd
allYlwn,
cxiil,
-P¥ILIT &
lbb@l{:@
AN @
Jm

SlamuT
yl@iPgligl
Qlill-4

rm, Ul

=1 ([

= Strings window B

¥ Exports

I Unicode

(,‘ Setup strings window

List setup
|:| Display only defined strings
|:| Ignore instructions/data definitions
Strict ASCII (7-bit) strings
Allowed string types
C (zero terminated)

|:| Pascal

|:| Pascal, 2 byte length

|:| Pascal, 4 byte length
|:| Pascal style Unicode, 2 byte length
|:| Pascal style Unicode, 4 byte length

Minimal string length: 5

X

10

‘D wizSafe

The results of the viewing raw strings

* The "Strings window" shows:

* We were able to find only a few strings related to HTTP headers, methods, and
query parameters.

* Because of that, the malware author might use some tricks to hide strings.

‘D wizSafe

We have found a new issue

* By examining imported functions and raw strings:

APl names and HTTP related strings that are actually used in the malware did
not appear.

« Why ?
* Are important characters obfuscated?

* |sthe malware packed? — Packing means compression and/or encryption of
executable code.

e Let's find the decode function on the assumption that important
strings are obfuscated.

The strategy to expose tricks progam

Function A
FunctionB. |
* The typical decode function have T ke
characteristics of: — __Function®
1. Being referenced from a lot of functions 1 FunctionG
« Whenever the program uses obfuscated strings, the Function —
decode function is called. \W'On
2. AXOR loopinthe function T ;
_ . _ _ . e decode function
e Using XOR is a established way of implementing
encryption and obfuscationincluding majorencryption | L=
algorithms. w
e Let's find the function that has both of above. —T,
S | TN D T B R B e t
* We try this way manually to understand the vor | —
logic here. Later, we will introduce several tools | |....
such as FLOSS and IDA Scope for automating —
this method. L ,

‘D wizSafe

[1] Many
| functions
referring to
a function.

2] A

_ function

has a XOR
instruction
ina loop.

‘D wizSafe

Finding the decode function with IDC

* |IDC: A C-like scripting language for automating IDA.

. IBﬁPython: Python bindings for IDA. This is not available for evaluation version of

 Reference and tutorials:
e https://www.hex-rays.com/products/ida/support/idadoc/162.shtml
* https://hex-rays.com/products/ida/support/tutorials/idc/index.shtml

* How to execute:
* There are two ways to execute IDC scripts. At this time, we use former one.

. %?ve your script as text file, then press the Alt+F7 keys on IDA to load and execute the script
ile.

* Pressthe Shift+F2 keys on IDA to open the "Script Execute" window, then write and execute
your script on the window.

* We prepared sample scripts. Let's unzip "idc.zip" on your desktop.

* We also prepared scripts written in IDAPython as "idapython.zip". If you have a
valid copy ot IDA Pro and are familiar with writing Python, you can use this instead
of IDC scripts.

D wizSafe

IDC Tutorial [1]:
Enumerating functions

e Let's start exercises for using IDC scripts with a easy sample.

* This script enumerates functions with the start and the end of
addresses.

#include<idc.idc>

static main(){
autoaddr,end, name, ea;
addr=0;

for (addr = NextFunction(addr); addr !=BADADDR; addr = NextFunction(addr)){
name = Name(addr);
end = GetFunctionAttr(addr, FUNCATTR_END);
Message("Function: %s, starts at %x, ends at %x\n", name, addr, end);

}

}
idclabl.idc

D wizSafe

DC Tutorial [2]:
Parsing mnemonics and operands

#include <idc.idc>

* This script parses the first st main()
function line by line and auto addr, end, name, ea, mnem, op1, Gass

' : addr=0; Mnemonics are representations of low-
dlsplays each mnemonic and I ELLIEINDNWIIMIELLIIRELGIEE [cvel machine instructionsin assembly
opera nd. name = Name(addr); language. Those are abbreviations for

end = GetFunctionAttr(addr, FUNCAT each operation.

Message(" Function: %s, starts at ox, e ———

ea=addr;

mnem = GetMnem(ea);

opl = GetOpnd(ea,0); ehp

op2 = GetOpnd(ea, 1); ehp, esp

Message(" %x: %s %s, %s\n", ea, mnem, op1, op2); F'SD. 10k

while(ea<end){ prr; svar 41, 0
ea = FindCode(ea, SEARCH_DOWN | SEARCH_NEXT); - —.3 -
mnem = GetMnem(ea); Lebptvar_8], 0
opl = GetOpnd(ea,0);
op2 = GetOpnd(ea, 1);
Message(" %x: %s %s, %s\n", ea, mnem, op1, op2);

} Operands are arguments for mnemonics.

break; . DL
red Operands specify the destinationand the source

idclab2.idc of each operation represented by mnemonics.

IDC Tutorial [3]:

D wizSafe

Adding colors and changing names

* This script parses the first

function line by line and

changes colors (#66ccff/light
blue) for lines that contain a

call instruction. It also
changes the name of the
function.

idclab3.idc B

#include <idc.idc>

static main(){
auto addr, end, name, ea, mnem;
addr=0;
for (addr = NextFunction(addr); addr |= BADADDR; addr = NextFunction(addr)){
name = Name(addr);
end = GetFunctionAttr(addr, FUNCATTR_END);
Message("Function: %s, starts at %x, ends at %x\n", name, addr, end);

while(ea<end){
ea =FindCode(ea, SEARCH_DOWN | SEARCH_NEXT);
mnem = GetMnem(ea);
if(strstr("call", mnem) ==0) SetColor(ea, CIC_ITEM, Oxffcc66);
}
name = sprintf("checked_sub_%x", addr);
MakeNameEx(addr, name, SN_NOCHECK);
break;

D wizSafe

Finding XOR instructions [1]

#include <idc.idc>

* This scriptchanges colorsfor [RE———-"

lines that contain a XOR auto addr, end, name, ea, mnem;
' ; addr=0;
mstruct!on and cha nge; names for (addr = NextFunction(addr); addr |=BADADDR; addr = NextFunction(addr)){
of functions that contain at |east |G
one XOR instruction. end = GetFunctionAttr(addr, FUNCATTR_END);
ea = addr;
while(ea<end){
ea = FindCode(ea, SEARCH_DOWN | SEARCH_NEXT);
mnem = GetMnem(ea);
if(strstr("xor", mnem) ==0){
SetColor(ea, CIC_ITEM, Oxffcc66);
name = sprintf("xor_sub_%x", addr);
MakeNameEx(addr, name, SN_NOCHECK);
Message("Function: %s has XOR at %x(%s)\n", name, ea);

idclab4.idc |

S wizsSafe

Finding XOR instructions [2]

 We found 185 functions that contain at least one XOR instructionin the malware.

* But, the purpose of some XOR instructionsis to clear a register. Those are not a part of the XOR
loop in the decode function. We should filter them out.

17 Functions window o & | ﬁ

Function name

Fd xor sub 10001000 |)

7| xor_sub_100010f0 loc_T000T4CE

F | xor_sub_10001250

el Yorub-10001430 cal l xor_sub_]QU1?aQU

| xor_sub_10001490 Moy [ebpt+var 8], eax

L xor_sub_100014e0 —

] xor_sub_ 10001880 xor eax, eax |

L xor_sub_10001990 ' ' '

%xor_sug_lggglbsg The XOR instruction with the same operands (e.g.

XOr_sup_ C .

7| xor_sub_10001e20 XOor eax, eax) means to clear the register to zero.
7| xor_sub_10001e60

| G ek 4 nn G

Press the Ctrl+F keys and type "xor" to

. : : . : 1 1 0
count functions including a xor instruction.
J | XUI_dU_ 1UUUD IV 1 O 1
£lvar cuilh 1NNN227N
- 2 0 1 1
Lim Copyright Internet Initiative Japan Inc. 0 0 0 19
e

D wizSafe

Finding XOR instructions 3]

#include <idc.idc>

e This script changes colors for static main(){

lines that contain a XOR auto addr, end, name, ea, mnem, op1l, op2;

: . addr=0;

Instruction, cha Nnges names of for (addr= NextFunction(addr); addr |= BADADDR; addr = NextFunction(addr)){
functions that contain at least name = Name(addr);

end = GetFunctionAttr(addr, FUNCATTR_END);

one XOR instruction, and filters
ea =addr;

out XOR instructions that clear a while(ea<end){

registe r ea =FindCode(ea, SEARCH_DOWN | SEARCH_NEXT);

mnem = GetMnem(ea);

if(strstr("xor", mnem) ==0){
opl = GetOpnd(ea,0);
op2 = GetOpnd(ea,1);
if(strstr(op1,0p2)== 0) continue;
SetColor(ea, CIC_ITEM, Oxffcc66);
name = sprintf("xor_nonZero_sub_%x", addr);
MakeNameEx(addr, name, SN_NOCHECK);
Message("Function: %s has XOR at %x(%s)\n", name, ea, mnem);

idclab5.idc

Finding XOR instructions (4]

S wizsSafe

* Anumber of functions containing a XOR instruction has been 58. But, this is still too many to

examine each one.

* We countreferences for each function called from other functions based on the initial strategy. We
can use "cross-references/xrefs" feature of IDA to do that.

Function name ~

| fdl xor nhonZero sub _100010f0
xor_nonZero_sub_ 10001990
xor_nonZero_sub_10001b30
xor_nonZero_sub_10001ch0
xor_nonZero_sub_10001e20
xor_nonZero_sub_10001e60
xor_nonZero_sub_10002550
xor_nonZero_sub_10003a70
xor_nonZero_sub_10004a80
xor_nonZero_sub_10004de0
Xor_ nonZero sub 10005650

hl“ﬁl"ﬁl“ﬁl"ﬁl“ﬁl"ﬁl"‘hl"ﬁl"ﬁl"ﬁ

© Attributes: bp-based
sub_10001250 proc near
var_44= dword ptr -44h

var_40= byte ptr -40h
var_38= byte Dtr -38h

In the graph view, you can press the X key at the start of
a function to display "cross-references/xrefs". It shows a
list of functions that calls the function you choose.

N Falalalalal Nal

Press the CtrI+F keys and type
"xor_nonZero"to count functions which
are renamed by the script "idclab5.idc".

< >

Copyright In

i | Xor_no) o
Line 1 o(l 58)

xrefs to sub_10001250

Directio Ty Address

E= Do...
= Do...

<

Line 1 of 2

o sub_100015B0+194
p sub_10001766+B9

GCancel

Text

call
call

Search

sub_10001250
sub_10001250

Help 21

D wizSafe

To be continued...

